The Lynd Lab is active in research in the following areas:

Microbial Cellulose Utilization

The Lynd Lab has a long-standing focus on fundamental and applied aspects of microbial cellulose utilization, including aspects of microbial physiology, kinetics, bioenergetics, microbial ecology, and robustness under process-relevant conditions.

10 Most Recent Publications

Chirania, P., E.K. Holwerda, R.J. Giannone, X. Liang, S. Poudel, J.C. Ellis, Y.J. Bomble, R.L. Hettich, L.R. Lynd. 2022. Metaproteomics Reveals Enzymatic Strategies Deployed by Anaerobic Microbiomes to Maintain Lignocellulose Deconstruction at High Solids. Nat. Commun.

Kubis, M.R., E.K. Holwerda, L.R. Lynd. 2022. Declining Carbohydrate Solubilization with Increasing Solids Loading during Fermentation of Cellulosic Feedstocks by Clostridium thermocellum: Documentation and Diagnostic Tests. Biotechnology for Biofuels and Bioproducts 15:12.

Beri, D., C.D. Herring, S. Blahova, S. Poudel, R.J. Giannone, R.L. Hettich, L.R. Lynd. 2021. Coculture with Hemicellulose-Fermenting Microbes Reverses Inhibition of Corn Fiber Solubilization by Clostridium thermocellum at Elevated Solids Loadings. Biotechnology for Biofuels. 14:24.

Holwerda, E.K., J. Zhou, S. Hon, D.M. Stevenson, D. Amador-Noguez, L.R. Lynd, J.P. van Dijken. 2020. Metabolic fluxes of Nitrogen and pyrophosphate in chemostat cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Appl. Environ. Microbiol., 86:23. doi: 0.1128/AEM.01795-20.

Shao, X., S.J. Murphy, L.R. Lynd. 2020. Characterization of reduced carbohydrate solubilization during Clostridium thermocellum fermentation with high switchgrass concentrations. Biomass Bioenergy 139: 05623. doi: 10.1016/j.biombioe.2020.105623.

Beri, D., W.S. York, L.R. Lynd, M.J. Peña, C.D. Herring. 2020. Development of a thermophilic coculture for corn fiber conversion to ethanol. Nat. Commun.11:1. doi: 10.1038/s41467-020-15704-z.

Balch, M.L., M.B. Chamberlain, R.S. Worthen, E.K. Holwerda, and L.R. Lynd. 2020. Fermentation with continuous ball milling: effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass Bioenergy 134 (2020): 105468.

Holwerda E.K., R.S. Worthen, N. Kothari, R.C. Lasky, B.H. Davison, C. Fu, Z.Y. Wang, R.A. Dixon, A.K. Biswal, D. Mohnen, R.S. Nelson, H.L. Baxter, M. Mazarei, C.N. Stewart Jr, W. Muchero, G.A. Tuskan, C.M. Cai, E.E. Gjersing, M.F. Davis, M.E. Himmel, C.E. Wyman, P. Gilna, L.R. Lynd. 2019. Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels. 12:25. doi: 10.1186/s13068-019-1363-5.

Liang, X., J.M. Whitham, E.K. Holwerda, X. Shao, L. Tian, Y.-W. Wu, V. Lombard, B. Henrissat, D.M. Klingeman, Z.K. Yang, M. Podar, T.L. Richard, J.G. Elkins, S.D. Brown, L.R. Lynd. 2018. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnology for Biofuels, 11 (1), art. no. 243. doi: 10.1186/s13068-018-1238-1.

Ghosh, S., E.K. Holwerda., R.S. Worthen, L.R. Lynd, B.P. Epps. 2018. Rheological properties of corn stover slurries during fermentation by Clostridium thermocellum. Biotechnology for Biofuels, 11 (1), art. no. 246. doi: 10.1186/s13068-018-1248-z.

Metabolic Engineering

The Lynd Lab's Metabolic Engineering group specializes in development and application of techniques for the genetic manipulation of cellulose- and hemicellulose-utilizing anaerobic bacteria pursuant to improving their properties and performance for production of cellulosic biofuels.

10 Most Recent Publications

Lanahan, A.,K. Zakowicz, L. Tian, D.G. Olson, L.R. Lynd. 2022. A Single Nucleotide Change in the PolC DNA Polymerase III in Clostridium thermocellum Is Sufficient to Create a Hypermutator Phenotype. Edited by Nicole R. Baun. Applied and Environmental Microbiology. 88(1):e01531-21.

Mazzoli, R., D.G. Olson, A.M. Concu, E.K. Holwerda, L.R. Lynd. 2022. In Vivo Evolution of Lactic Acid Hyper-Tolerant Clostridium thermocellum. New Biotechnology.

Hon, S., T. Jacobson, D.M. Stevenson, M.I. Maloney, R.J. Giannone, R.L. Hettich, D. Amador-Noguez, D.G. Olson, L.R. Lynd. 2022. Increasing the Thermodynamic Driving force of the Phosphofructokinase Reaction in Clostridium thermocellum. Applied and Environmental Microbiology, 88(22).e01258-22.

Foster, F., V.S. Boorla, S. Dash, S. Gopalakrishnan, T.B. Jacobson, D.G Olson, D. Amador-Noguez, L.R Lynd, C.D Maranas. 2022. Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Metabolic Engineering. 69:286-301.

Kuil, T., S, Hon, J, Yayo, C, Foster, G. Ravagnan, C,D. Maranas, L.R. Lynd, D.G. Olson,  A.J.A. van Maris. 2022. Functional Analysis of H+-Pumping Membrane-Bound Pyrophosphatase, ADP-Glucose Synthase, and Pyruvate Phosphate Dikinase as Pyrophosphate Sources in Clostridium thermocellum. Applied and Environmental Microbiology. 88(4): e01857-21.

Shao, X., C.D. Herring, Y. Zhang, G. Zhang, L. Tian, L.R. Lynd. 2021. Identification and Deletion of The Genes Responsible for Hydrogen Production in Thermoanaerobacter Ethanolicus JW200. Research Square.

Fenton, C.A., Q. Tang, D. G. Olson, M.I. Maloney, J.L. Bose, L.R. Lynd, A.W. Fenton. 2021. Inhibition of pyruvate kinase from Thermoanaerobacterium saccharolyticum by IMP is independent of the extra-C domain. Frontiers in Microbiology. 12:628308. doi: 10.3389/fmicb.2021.628308.

Kuil, T, S. Hon, J. Yayo, C. Foster, G. Ravagnan, C.D. Maranas, L.R. Lynd, D.G. Olson,  A.J.A. van Maris. 2021. Functional Analysis of H+-Pumping Membrane-Bound Pyrophosphatase, ADP-Glucose Synthase, and Pyruvate Phosphate Dikinase as Pyrophosphate Sources in Clostridium Thermocellum. Applied and Environmental Microbiology, 88.e01857-21.

Yayo J., T. Kuil, D.G. Olson, L.R. Lynd, E.K. Holwerda, A.J.A. van Maris. 2021. Laboratory evolution and reverse engineering of Clostridium thermocellum for growth on glucose and fructose.  Applied and Environmental Microbiology. .03017-20.

Cui, X., D. Stevenson, T. Korosh, D. Amador-Noguez, D.G. Olson, and L.R. Lynd. 2020. Developing a Cell-Free Extract Reaction (CFER) System in Clostridium Thermocellum to Identify Metabolic Limitations to Ethanol Production. Energy Frontiers.

Innovative Biomass Processing Technologies

The Lynd group's activity in this domain encompasses reactor analysis and design, development and testing innovative unit operations and process concepts, process simulation and evaluation.

10 Most Recent Publications

Lynd, L.R., G.T. Beckham et al. (21 coauthors). 2022. Toward low-cost biological and hybrid processing of cellulosic biomass to fuels. Energy and Environmental Science. 15:938–990. doi: 10.1039/D1EE02540F

Hannon J.R., L.R. Lynd, O. Andrade, P.T. Benavides, G.T. Beckham, M.J. Biddy, N. Brown, M.F. Chagas, B.H. Davison, T. Foust, T.L. Junqueira, M.S. Laser, Z. Li, T. Richard, L. Tao, G.A. Tuskan, M. Wang, J. Woods, C.E. Wyman. 2019. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks. Proc. Natl. Acad. Sci. USA. 2019 Nov 25. pii: 201821684. doi: 10.1073/pnas.1821684116. PubMed PMID: 31767762.

Lynd, L.R.  2018. 2G 2.0.  In: L.A.B. Cortez, M.R.L.V. Leal, L.A.H. Nogueira (eds.).  Sugarcane bioenergy for sustainable development. Taylor and Francis.

Lynd, L.R. 2017. The grand challenge of cellulosic biofuels. Nat. Biotechnol., 35(10), 912–915.

Lynd, L.R., X. Liang, M.J. Biddy, A. Allee, Hao Cai, T. Foust, M.E. Himmel, M.S. Laser, M. Wang, C.E. Wyman. 2017. Cellulosic ethanol: Status and innovation.  Curr. Opin. Biotechnol. 45:201-211.

Losordo, Z., J. McBride, J. van Rooyen, K. Wenger, D. Willies, A. Froehlich, I. Macedo, L.R. Lynd.  2016.  Cost-competitive second generation ethanol production from hemicellulose in a Brazilian sugar cane ethanol refinery.  Biofuel. Bioprod. Bioref. 10:589-602.

Herring C.D., W.R. Kenealy, A. Joe Shaw, S.F. Covalla, D.G. Olson, J. Zhang, W. Ryan Sillers, V. Tsakraklides, J.S. Bardsley, S.R. Rogers, et al. 2016. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol. Biofuels 9:125-141. doi: 10.1186/s13068-016-0536-8.

Lynd, L.R., A.M. Guss, M.E. Himmel, D. Beri, C. Herring, E.K. Holwerda, S.J.L. Murphy, D.G. Olson, J.Paye, T. Rydzak, X. Shao, L. Tian, R. Worthen.  2016. Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacter saccharolyitcum.  pP 365-394 In: C. Wittmand and J.C.Liao (eds.) Industrial Biotechnology: Microorganisms.  Wiley-VCH Verlag & Co., KGaA.  

Shao, X., K. DiMarco, T.L. Richard, L.R. Lynd. 2015. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue. Biotechnol. Biofuels. 8:35-44.

Archambault-Léger, V., Z. Losordo, L.R. Lynd. 2015. Energy, sugar dilution, and economic analysis of hot water flow-through pre-treatment for producing biofuel from sugarcane residues. Biofuels, Bioprod. Bioref. 9: 95–108.

Sustainable Bioenergy Futures

Professor Lynd and members of the Lynd group are active in envisioning sustainable bioenergy futures and paths to their realization. This activity encompasses aspects of feedstock supply, land use and intensification, environmental quality, and economic development.

10 Most Recent Publications

Allee, A., L.R. Lynd, and V. Vaze. 2021. Cross-national analysis of food security drivers: comparing results based on the Food Insecurity Experience Scale and Global Food Security Index. Food Security. 13:1245-1261

Oliveira, J., E.E. Campbell, R.A.C Lamparelli, G.K.D.A. Figueiredo, J.R. Soares, D. Jaiswal, L.A. Monteiro, M.S. Vianna, L.R. Lynd, J.J. Sheehan. 2020. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Obs. Geoinf. 93: 102205.

Field, J.L., T.L. Richard, E.A.H. Smithwick, H. Cai, M.S. Laser, D.S. LeBauer, S.P. Long, K. Paustian, Z. Qin, J.J. Sheehan, P. Smith, M.Q. Wang, L.R. Lynd. 2020. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl. Acad. Sci. USA.117, no. 36: 21968–21977.

Moreira, M.M.R, J.E.A Seabra, L.R. Lynd, S.M. Arantes, M.P. Cunha, and J.J.M Guilhoto. 2020. Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat. Sustainability, 2020, 1–8.

Leite, J.G.D, M.R.L.V. Leal, L.A.B. Cortez, L.R. Lynd, F. Rosillo-Calle. 2019. Reconciling food security, environmental preservation and biofuel production lessons from Brazil. Sugarcane Bioenergy for Sustainable Development: Expanding Production in Latin America and Africa. 154-171. 10.4324/9780429457920. WOS:000467322800016.

Monteiro L.A., A.M. Allee, E.E. Campbell, L.R. Lynd, J.R. Soares, D. Jaiswal, J. de Castro Oliveira, V.M. Dos Santos, A.E. Morishige, G.K.D.A. Figueiredo, R.A.C. Lamparelli, N.D. Mueller, J. Gerber, L.A.B. Cortez, J.J. Sheehan. 2019. Assessment of yield gaps on global grazed-only permanent pasture using climate binning. Glob. Chang. Biol. 2019 Nov 15. doi: 10.1111/gcb.14925. PubMed PMID: 31730282.

Souza, G.M., M.V.R. Ballester, C.H. de Brito Cruz, H. Chum, B. Dale, V.H. Dale, … L. Van der Wielen. 2017. The role of bioenergy in a climate-changing world. Environ. Dev., 23 (October 2016), 57–64.

de Ruiter, H., J.I. Macdiarmid, R.B. Matthews, T.  Kastner, L.R. Lynd, P. Smith. 2017. Total global agricultural land footprint associated with UK food supply 1986–2011. Global Environ. Change 43: 72-81.

Souza, S.P., L.A.H Nogueira, H.K. Watson, L.R. Lynd, M. Missiry, L.A.B. Cortez.  2016. Potential of sugar cane in modern energy development in Southern Africa. Front. Energy Res. 4:39.

Fulton, L.M., L.R. Lynd, A. Körner, N. Greene, L. Tonachel. 2015. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod. Bioref. (doi: 10.1002/bbb.1559)