The Lynd Lab is active in research in the following areas:
The Lynd Lab has a long-standing focus on fundamental and applied aspects of microbial cellulose utilization, including aspects of microbial physiology, kinetics, bioenergetics, microbial ecology, and robustness under process-relevant conditions.
Zambello, I.U., E.K. Holwerda, L.R. Lynd. 2024.Characterization of sugarcane bagasse solubilization and utilization bythermophilic cellulolytic and saccharolytic bacteria at increasing solidloadings. Bioresource Technology, 406, p.130973.
Vaz, L.P., H.B. Sears, E.A. Miranda, E.K. Holwerda, L.R. Lynd. 2024. Solubilization of sugarcane bagasse by mono and cocultures of thermophilic anaerobes with and without cotreatment. Bioresource Technology, p.130982.
Chirania, P., E.K. Holwerda, R.J. Giannone, X. Liang, S. Poudel, J.C. Ellis, Y.J. Bomble, R.L. Hettich, L.R. Lynd. 2022. Metaproteomics Reveals Enzymatic Strategies Deployed by Anaerobic Microbiomes to Maintain Lignocellulose Deconstruction at High Solids. Nat. Commun. 13: doi.org/10.1038/s41467-022-31433-x
Kubis, M.R., E.K. Holwerda, L.R. Lynd. 2022. Declining Carbohydrate Solubilization with Increasing Solids Loading during Fermentation of Cellulosic Feedstocks by Clostridium thermocellum: Documentation and Diagnostic Tests. Biotechnology for Biofuels and Bioproducts 15:12. doi.org/10.1186/s13068-022-02110-4
Beri, D., C.D. Herring, S. Blahova, S. Poudel, R.J. Giannone, R.L. Hettich, L.R. Lynd. 2021. Coculture with Hemicellulose-Fermenting Microbes Reverses Inhibition of Corn Fiber Solubilization by Clostridium thermocellum at Elevated Solids Loadings. Biotechnology for Biofuels. 14:24. doi.org/10.1186/s13068-020-01867-w
Holwerda, E.K., J. Zhou, S. Hon, D.M. Stevenson, D. Amador-Noguez, L.R. Lynd, J.P. van Dijken. 2020. Metabolic fluxes of Nitrogen and pyrophosphate in chemostat cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Appl. Environ. Microbiol., 86:23. doi: 0.1128/AEM.01795-20.
Shao, X., S.J. Murphy, L.R. Lynd. 2020. Characterization of reduced carbohydrate solubilization during Clostridium thermocellum fermentation with high switchgrass concentrations. Biomass Bioenergy 139: 05623. doi: 10.1016/j.biombioe.2020.105623.
Beri, D., W.S. York, L.R. Lynd, M.J. Peña, C.D. Herring. 2020. Development of a thermophilic coculture for corn fiber conversion to ethanol. Nat. Commun.11:1. doi: 10.1038/s41467-020-15704-z.
Balch, M.L., M.B. Chamberlain, R.S. Worthen, E.K. Holwerda, and L.R. Lynd. 2020. Fermentation with continuous ball milling: effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass Bioenergy 134 (2020): 105468.
Holwerda E.K., R.S. Worthen, N. Kothari, R.C. Lasky, B.H. Davison, C. Fu, Z.Y. Wang, R.A. Dixon, A.K. Biswal, D. Mohnen, R.S. Nelson, H.L. Baxter, M. Mazarei, C.N. Stewart Jr, W. Muchero, G.A. Tuskan, C.M. Cai, E.E. Gjersing, M.F. Davis, M.E. Himmel, C.E. Wyman, P. Gilna, L.R. Lynd. 2019. Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels. 12:25. doi: 10.1186/s13068-019-1363-5.
The Lynd Lab's Metabolic Engineering group specializes in development and application of techniques for the genetic manipulation of cellulose- and hemicellulose-utilizing anaerobic bacteria pursuant to improving their properties and performance for production of cellulosic biofuels.
Pech-Canul, A., S.K. Hammer, S.J. Ziegler, I.D. Richardson, B.D. Sharma, M.J. Maloney, Y.J. Bomble, L.R. Lynd, D.G. Olson. 2024. The role of AdhE on ethanol tolerance and production in Clostridium thermocellum. Journal of Biological Chemistry, 300(8).
Chiarelli, D.P., B.D. Sharma, S. Hon, L.W. Bergamo, L.R. Lynd, D.G. Olson. 2024. Expression and Characterization of Monofunctional Alcohol Dehydrogenase Enzymes in Clostridium thermocellum. Metabolic Engineering Communications, p.e00243.
Callaghan, M.M., E. Thusoo, B.D. Sharma, F. Getahun, D.M. Stevenson, C. Maranas, D.G. Olson, L.R. Lynd, D. Amador-Noguez. 2023. Deuterated water as a substrate-agnostic isotope tracer for investigating reversibility and thermodynamics of reactions in central carbonmetabolism. Metabolic engineering, 80, pp.254–266.
Olson, D.G., M.J. Maloney, A.A. Lanahan, N.D. Cervenka, Y. Xia, A. Pech-Canul, S. Hon, L. Tian, S.J. Ziegler, Y. Bomble, L.R. Lynd. 2023. Ethanol tolerance in engineered strains of Clostridium thermocellum. Biotechnology for Biofuels and Bioproducts, 16(1), p.137.
Schroeder, W.L., T. Kuil, A.J. van Maris, D.G. Olson, L.R. Lynd, C.D. Maranas. 2023. Adetailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis. Metabolic engineering, 77, pp.306–322.
Sharma, B.D., D.G. Olson, R.J. Giannone, R.L. Hettich, L.R. Lynd. 2023. Characterization and amelioration of filtration difficulties encountered in metabolomic studies of Clostridium thermocellum at elevated sugar concentrations. Applied and Environmental Microbiology, 89(4), pp.e00406–23.
Herring, C.D., M.P. Ajie, L.R. Lynd. 2023. Growth-uncoupled propanediol production in a Thermoanaerobacterium thermosaccharolyticum strain engineered for high ethanol yield. Scientific Reports, 13(1), p.2394.
Lanahan, A., K. Zakowicz, L. Tian, D.G. Olson, L.R. Lynd. 2022. A Single Nucleotide Change in the PolC DNA Polymerase III in Clostridium thermocellum Is Sufficient to Create a Hypermutator Phenotype. Edited by Nicole R. Baun. Applied and Environmental Microbiology. 88(1):e01531–21.
Mazzoli, R., D.G. Olson, A.M. Concu, E.K. Holwerda, L.R. Lynd. 2022. In Vivo Evolution of Lactic Acid Hyper-Tolerant Clostridium thermocellum. New Biotechnology. doi.org/10.1016/j.nbt2021.12.003.
Hon, S., T. Jacobson, D.M. Stevenson, M.I. Maloney, R.J. Giannone, R.L. Hettich, D. Amador-Noguez, D.G. Olson, L.R. Lynd. 2022. Increasing the Thermodynamic Driving force of the Phosphofructokinase Reaction in Clostridium thermocellum. Applied and Environmental Microbiology, 88(22).e01258-22.
The Lynd group's activity in this domain encompasses reactor analysis and design, development and testing innovative unit operations and process concepts, process simulation and evaluation.
Bharadwaj, A., E.K. Holwerda, J.M. Regan, L.R. Lynd, T.L. Richard. 2024. Enhancing anaerobic digestion of lignocellulosic biomass by mechanical cotreatment. Biotechnology for Biofuels and Bioproducts, 17(1), p.76.
Kubis, M.R., L.R. Lynd. 2023. Carbon capture from corn stover ethanol production via mature consolidated bioprocessing enables large negative biorefinery GHG emissions and fossil fuel-competitive economics. Sustainable Energy & Fuels, 7(16), pp.3842–3852.
Lynd, L.R., G.T. Beckham et al. (21 coauthors). 2022. Toward low-cost biological and hybrid processing of cellulosic biomass to fuels. Energy and Environmental Science. 15:938–990. doi: 10.1039/D1EE02540F
Hannon J.R., L.R. Lynd, O. Andrade, P.T. Benavides, G.T. Beckham, M.J. Biddy, N. Brown, M.F. Chagas, B.H. Davison, T. Foust, T.L. Junqueira, M.S. Laser, Z. Li, T. Richard, L. Tao, G.A. Tuskan, M. Wang, J. Woods, C.E. Wyman. 2019. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks. Proc. Natl. Acad. Sci. USA. 2019 Nov 25. pii: 201821684. doi: 10.1073/pnas.1821684116. PubMed PMID: 31767762.
Lynd, L.R. 2018. 2G 2.0. In: L.A.B. Cortez, M.R.L.V. Leal, L.A.H. Nogueira (eds.). Sugarcane bioenergy for sustainable development. Taylor and Francis.
Lynd, L.R. 2017. The grand challenge of cellulosic biofuels. Nat. Biotechnol., 35(10), 912–915. doi.org/10.1038/nbt.3976.
Lynd, L.R., X. Liang, M.J. Biddy, A. Allee, Hao Cai, T. Foust, M.E. Himmel, M.S. Laser, M. Wang, C.E. Wyman. 2017. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 45:201–211.
Losordo, Z., J. McBride, J. van Rooyen, K. Wenger, D. Willies, A. Froehlich, I. Macedo, L.R. Lynd. 2016. Cost-competitive second generation ethanol production from hemicellulose in a Brazilian sugar cane ethanol refinery. Biofuel. Bioprod. Bioref. 10:589–602.
Herring C.D., W.R. Kenealy, A. Joe Shaw, S.F. Covalla, D.G. Olson, J. Zhang, W. Ryan Sillers, V. Tsakraklides, J.S. Bardsley, S.R. Rogers, et al. 2016. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol. Biofuels 9:125–141. doi: 10.1186/s13068-016-0536-8.
Lynd, L.R., A.M. Guss, M.E. Himmel, D. Beri, C. Herring, E.K. Holwerda, S.J.L. Murphy, D.G. Olson, J.Paye, T. Rydzak, X. Shao, L. Tian, R. Worthen. 2016. Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacter saccharolyitcum. pp 365–394 In: C. Wittmand and J.C.Liao (eds.) Industrial Biotechnology: Microorganisms. Wiley-VCH Verlag & Co., KGaA.
Professor Lynd and members of the Lynd group are active in envisioning sustainable bioenergy futures and paths to their realization. This activity encompasses aspects of feedstock supply, land use and intensification, environmental quality, and economic development.
Gurgel, A.C., J.E. Seabra, S.M. Arantes, M.M. Moreira, L.R. Lynd, R. Galindo. 2024. Contribution of double-cropped maize ethanol in Brazil to sustainable development. Nature Sustainability, pp.1–12.
Lynd, L., A.R. Kemanian, J. Smith, T.L. Richard, A. Arifi, S. Bozzetto, C. Fabbri, J. Field, C. Hicks-Pries, M. Kubis, P. Smith. 2024. Soil application of high-lignin fermentation byproduct to increase the sustainability of liquid biofuel production from crop residues. Environmental Research Letters, 19(8), p.083002.
Allee, A., L.R. Lynd, and V. Vaze. 2021. Cross-national analysis of food security drivers: comparing results based on the Food Insecurity Experience Scale and Global Food Security Index. Food Security. 13:1245–1261
Oliveira, J., E.E. Campbell, R.A.C Lamparelli, G.K.D.A. Figueiredo, J.R. Soares, D. Jaiswal, L.A. Monteiro, M.S. Vianna, L.R. Lynd, J.J. Sheehan. 2020. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Obs. Geoinf. 93: 102205.
Field, J.L., T.L. Richard, E.A.H. Smithwick, H. Cai, M.S. Laser, D.S. LeBauer, S.P. Long, K. Paustian, Z. Qin, J.J. Sheehan, P. Smith, M.Q. Wang, L.R. Lynd. 2020. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl. Acad. Sci. USA.117, no. 36: 21968–21977.
Moreira, M.M.R, J.E.A. Seabra, L.R. Lynd, S.M. Arantes, M.P. Cunha, and J.J.M. Guilhoto. 2020. Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat. Sustainability, 2020, 1–8.
Leite, J.G.D, M.R.L.V. Leal, L.A.B. Cortez, L.R. Lynd, F. Rosillo-Calle. 2019. Reconciling food security, environmental preservation and biofuel production lessons from Brazil. Sugarcane Bioenergy for Sustainable Development: Expanding Production in Latin America and Africa. 154–171. 10.4324/9780429457920. WOS:000467322800016.
Monteiro L.A., A.M. Allee, E.E. Campbell, L.R. Lynd, J.R. Soares, D. Jaiswal, J. de Castro Oliveira, V.M. Dos Santos, A.E. Morishige, G.K.D.A. Figueiredo, R.A.C. Lamparelli, N.D. Mueller, J. Gerber, L.A.B. Cortez, J.J. Sheehan. 2019. Assessment of yield gaps on global grazed-only permanent pasture using climate binning. Glob. Chang. Biol. 2019 Nov 15. doi: 10.1111/gcb.14925. PubMed PMID: 31730282.
Souza, G.M., M.V.R. Ballester, C.H. de Brito Cruz, H. Chum, B. Dale, V.H. Dale, … L. Van der Wielen. 2017. The role of bioenergy in a climate-changing world. Environ. Dev., 23 (October 2016), 57–64. doi.org/10.1016/j.envdev.2017.02.008.
de Ruiter, H., J.I. Macdiarmid, R.B. Matthews, T. Kastner, L.R. Lynd, P. Smith. 2017. Total global agricultural land footprint associated with UK food supply 1986–2011. Global Environ. Change 43: 72–81. doi.org/10.1016/j.gloenvcha.2017.01.007.