Research

The Lynd Lab is active in research in the following areas:

Microbial Cellulose Utilization

The Lynd Lab has a long-standing focus on fundamental and applied aspects of microbial cellulose utilization, including aspects of microbial physiology, kinetics, bioenergetics, microbial ecology, and robustness under process-relevant conditions.

10 Most Recent Publications

Holwerda, E.K., J. Zhou, S. Hon, D.M. Stevenson, D. Amador-Noguez, L.R. Lynd, J.P. van Dijken. 2020. Metabolic fluxes of Nitrogen and pyrophosphate in chemostat cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Appl. Environ. Microbiol., September 25, 2020, AEM.01795-20, aem; AEM.01795-20v1. https://doi.org/10.1128/AEM.01795-20.

Shao, X., S.J. Murphy, L.R. Lynd. 2020. Characterization of reduced carbohydrate solubilization during Clostridium thermocellum fermentation with high switchgrass concentrations. Biomass Bioenergy 139 (August 1, 2020): 105623. https://doi.org/10.1016/j.biombioe.2020.105623.

Beri, D., W.S. York, L.R. Lynd, M.J. Peña, C.D. Herring. 2020. Development of a thermophilic coculture for corn fiber conversion to ethanol. Nat. Commun. 11, no. 1 (April 22, 2020): 1937. https://doi.org/10.1038/s41467-020-15704-z.

Balch, M.L., M.B. Chamberlain, R.S. Worthen, E.K. Holwerda, and L.R. Lynd. 2020. Fermentation with continuous ball milling: effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass Bioenergy 134 (2020): 105468.

Holwerda E.K., R.S. Worthen, N. Kothari, R.C. Lasky, B.H. Davison, C. Fu, Z.Y. Wang, R.A. Dixon, A.K. Biswal, D. Mohnen, R.S. Nelson, H.L. Baxter, M. Mazarei, C.N. Stewart Jr, W. Muchero, G.A. Tuskan, C.M. Cai, E.E. Gjersing, M.F. Davis, M.E. Himmel, C.E. Wyman, P. Gilna, L.R. Lynd. 2019. Correction to: Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol. Biofuels. 2019 Feb 9;12:25. doi: 10.1186/s13068-019-1363-5. eCollection 2019. PubMed PMID: 30774713; PubMed Central PMCID: PMC6368767.

Liang, X., J.M. Whitham, E.K. Holwerda, X. Shao, L. Tian, Y.-W. Wu, V. Lombard, B. Henrissat, D.M. Klingeman, Z.K. Yang, M. Podar, T.L. Richard, J.G. Elkins, S.D. Brown, L.R. Lynd. 2018. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnol. Biofuels, 11 (1), art. no. 243. doi: 10.1186/s13068-018-1238-1.

Ghosh, S., E.K. Holwerda., R.S. Worthen, L.R. Lynd, B.P. Epps. 2018. Rheological properties of corn stover slurries during fermentation by Clostridium thermocellum. Biotechnol. Biofuels, 11 (1), art. no. 246. doi: 10.1186/s13068-018-1248-z.

Balch, M.L., E.K. Holwerda, M.F. Davis, R.W. Sykes, R.M. Happs, R. Kumar, C.E. Wyman, L.R. Lynd.  2017. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in-situ ball-milling.  Energy Env. Sci. 10:1252-1261. DOI: 10.1039/c6ee03748h.  

Gilna, P., L.R. Lynd, D. Mohnen, M.F. Davis, & B.H. Davison. 2017. Progress in understanding and overcoming biomass recalcitrance: A BioEnergy Science Center (BESC) perspective Mike Himmel. Biotechnol. Biofuels, 10(1), 1–7. http://doi.org/10.1186/s13068-017-0971-1.

Bomble, Y. J., C. Y. Lin, A. Amore, H. Wei, E. K. Holwerda, P. N. Ciesielski, … M. E. Himmel, 2017. Lignocellulose deconstruction in the biosphere. Current Opinion in Chemical Biology. http://doi.org/10.1016/j.cbpa.2017.10.013.

Metabolic Engineering

The Lynd Lab's Metabolic Engineering group specializes in development and application of techniques for the genetic manipulation of cellulose- and hemicellulose-utilizing anaerobic bacteria pursuant to improving their properties and performance for production of cellulosic biofuels.

10 Most Recent Publications

Jacobson, T.B., T.K. Korosh, D.M. Stevenson, C. Foster, C. Maranas, D.G. Olson, L.R. Lynd, D. Amador-Noguez. 2020. In vivo thermodynamic analysis of glycolysis in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum using 13C and 2H tracers. Msystems 5, no. 2 (2020).

Holwerda, E.K., D.G. Olson, N.M. Ruppertsberger, D.M. Stevenson, S.J.L. Murphy, M.I. Maloney, A.A. Lanahan, D. Amador-Noguez, L.R. Lynd. 2020. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnol. Biofuels 13, no. 1 (2020): 1–20.

Walker J.E., A.A. Lanahan, T. Zheng, C. Toruno, L.R. Lynd, J.C. Cameron, D.G. Olson, C.A. Eckert. 2019. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab. Eng. Commun. 2019 Nov 28;10:e00116. doi: 10.1016/j.mec.2019.e00116. eCollection 2020 Jun. PubMed PMID: 31890588; PubMed Central PMCID: PMC6926293.

Cui J, M.I. Maloney, D.G. Olson, L.R. Lynd. 2020. Conversion of phosphoenolpyruvate to pyruvate in Thermoanaerobacterium saccharolyticum. Metab. Eng. Commun. 2020 Jan 23;10:e00122. doi: 10.1016/j.mec.2020.e00122. eCollection 2020 Jun. PubMed PMID: 32025490; PubMed Central PMCID: PMC6997586.

Koendjbiharie J.G., S. Hon, M. Pabst, et al. 2020. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase. J. Biol Chem. 2020;295(7):1867–1878. doi:10.1074/jbc.RA119.011239

Tian L., P.M. Conway, N.D. Cervenka, J. Cui, M. Maloney, D.G. Olson, L.R. Lynd. 2019. Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. Biotechnol. Biofuels. 2019 Jul 23;12:186. doi: 10.1186/s13068-019-1524-6. eCollection 2019. PubMed PMID: 31367231; PubMed Central PMCID: PMC6652007.

Dash S., D.G. Olson, S.H. Joshua Chan, D. Amador-Noguez, L.R. Lynd, C.D. Maranas. 2019. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab. Eng. 2019 Sep;55:161-169. doi: 10.1016/j.ymben.2019.06.006. Epub 2019 Jun 17. PubMed PMID: 31220663.

Tian L., N.D. Cervenka, A.M. Low, D.G. Olson, L.R. Lynd. 2019. A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol and ethanol. Sci. Rep. 2019 Feb 11;9(1):1736. doi: 10.1038/s41598-018-37979-5. PubMed PMID: 30741948; PubMed Central PMCID: PMC6370804.

Cui J., D.G. Olson, L.R. Lynd. 2019. Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Metab. Eng. 2019 Jan;51:32-42. doi: 10.1016/j.ymben.2018.09.006. Epub 2018 Sep 12. PubMed PMID: 30218716.

Lo J., T. Zheng, S. Hon, D.G. Olson, L.R. Lynd. 2018. Correction for Lo et al., The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J. Bacteriol. 2018 Dec 7;201(1). pii: e00405-18. doi: 10.1128/JB.00405-18. Print 2019 Jan 1. PubMed PMID: 30530845; PubMed Central PMCID: PMC6287460.

Innovative Biomass Processing Technologies

The Lynd group's activity in this domain encompasses reactor analysis and design, development and testing innovative unit operations and process concepts, process simulation and evaluation.

10 Most Recent Publications

Hannon J.R., L.R. Lynd, O. Andrade, P.T. Benavides, G.T. Beckham, M.J. Biddy, N. Brown, M.F. Chagas, B.H. Davison, T. Foust, T.L. Junqueira, M.S. Laser, Z. Li, T. Richard, L. Tao, G.A. Tuskan, M. Wang, J. Woods, C.E. Wyman. 2019. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks. Proc. Natl. Acad. Sci. U S A. 2019 Nov 25. pii: 201821684. doi: 10.1073/pnas.1821684116. PubMed PMID: 31767762.

Lynd, L.R.  2018. 2G 2.0.  In: L.A.B. Cortez, M.R.L.V. Leal, L.A.H. Nogueira (eds.).  Sugarcane bioenergy for sustainable development.  Taylor and Francis.

Lynd, L.R. 2017. The grand challenge of cellulosic biofuels. Nat. Biotechnol., 35(10), 912–915. http://doi.org/10.1038/nbt.3976.

Lynd, L.R., X. Liang, M.J. Biddy, A. Allee, Hao Cai, T. Foust, M.E. Himmel, M.S. Laser, M. Wang, C.E. Wyman. 2017. Cellulosic ethanol: Status and innovation.  Curr. Opin. Biotechnol. 45:201-211.

Losordo, Z., J. McBride, J. van Rooyen, K. Wenger, D. Willies, A. Froehlich, I. Macedo, L.R. Lynd.  2016.  Cost-competitive second generation ethanol production from hemicellulose in a Brazilian sugar cane ethanol refinery.  Biofuel. Bioprod. Bioref. 10:589-602.

Herring C.D., W.R. Kenealy, A. Joe Shaw, S.F. Covalla, D.G. Olson, J. Zhang, W. Ryan Sillers, V. Tsakraklides, J.S. Bardsley, S.R. Rogers, et al. 2016. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol. Biofuels 9:125-141. doi: 10.1186/s13068-016-0536-8.

Lynd, L.R., A.M. Guss, M.E. Himmel, D. Beri, C. Herring, E.K. Holwerda, S.J.L. Murphy, D.G. Olson, J.Paye, T. Rydzak, X. Shao, L. Tian, R. Worthen.  2016. Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacter saccharolyitcum.  pP 365-394 In: C. Wittmand and J.C.Liao (eds.) Industrial Biotechnology: Microorganisms.  Wiley-VCH Verlag & Co., KGaA.  

Shao, X., K. DiMarco, T.L. Richard, L.R. Lynd. 2015. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue. Biotechnol. Biofuels. 8:35-44.

Archambault-Léger, V., Z. Losordo, L.R. Lynd. 2015. Energy, sugar dilution, and economic analysis of hot water flow-through pre-treatment for producing biofuel from sugarcane residues. Biofuels, Bioprod. Bioref. 9: 95–108.

Laser, M., L.R. Lynd. 2014. Comparative efficiency and driving range of light- and heavy- duty vehicles powered with biomass energy stored in liquid fuels or batteries. PNAS. 111(9):3360-3364.

Sustainable Bioenergy Futures

Professor Lynd and members of the Lynd group are active in envisioning sustainable bioenergy futures and paths to their realization. This activity encompasses aspects of feedstock supply, land use and intensification, environmental quality, and economic development.

10 Most Recent Publications

Oliveira, J., E.E. Campbell, R.A.C Lamparelli, G.K.D.A. Figueiredo, J.R. Soares, D. Jaiswal, L.A. Monteiro, M.S. Vianna, L.R. Lynd, J.J. Sheehan. 2020. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Obs. Geoinf. 93 (2020): 102205.

Field, J.L., T.L. Richard, E.A.H. Smithwick, H. Cai, M.S. Laser, D.S. LeBauer, S.P. Long, K. Paustian, Z. Qin, J.J. Sheehan, P. Smith, M.Q. Wang, L.R. Lynd. 2020. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl. Acad. Sci. U.S.A.117, no. 36 (2020): 21968–21977.

Moreira, M.M.R, J.E.A Seabra, L.R. Lynd, S.M. Arantes, M.P. Cunha, and J.J.M Guilhoto. 2020. Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat. Sustainability, 2020, 1–8.

Leite, J.G.D, M.R.L.V. Leal, L.A.B. Cortez, L.R. Lynd, F. Rosillo-Calle. 2019. Reconciling food security, environmental preservation and biofuel production lessons from Brazil. Sugarcane Bioenergy for Sustainable Development: Expanding Production in Latin America and Africa. 154-171. 10.4324/9780429457920. WOS:000467322800016.

Monteiro L.A., A.M. Allee, E.E. Campbell, L.R. Lynd, J.R. Soares, D. Jaiswal, J. de Castro Oliveira, V.M. Dos Santos, A.E. Morishige, G.K.D.A. Figueiredo, R.A.C. Lamparelli, N.D. Mueller, J. Gerber, L.A.B. Cortez, J.J. Sheehan. 2019. Assessment of yield gaps on global grazed-only permanent pasture using climate binning. Glob. Chang. Biol. 2019 Nov 15. doi: 10.1111/gcb.14925. PubMed PMID: 31730282.

Souza, G.M., M.V.R. Ballester, C.H. de Brito Cruz, H. Chum, B. Dale, V.H. Dale, … L. Van der Wielen. 2017. The role of bioenergy in a climate-changing world. Environ. Dev., 23(October 2016), 57–64. http://doi.org/10.1016/j.envdev.2017.02.008.

de Ruiter, H., J.I. Macdiarmid, R.B. Matthews, T.  Kastner, L.R. Lynd, P. Smith. 2017. Total global agricultural land footprint associated with UK food supply 1986–2011. Global Environ. Change 43: 72-81. doi.org/10.1016/j.gloenvcha.2017.01.007.

Souza, S.P., L.A.H Nogueira, H.K. Watson, L.R. Lynd, M. Missiry, L.A.B. Cortez.  2016. Potential of sugar cane in modern energy development in Southern Africa.  Front. Energy Res. 4:39.  doi.org/10.3389/fenrg.2016.00039.

Fulton, L.M., L.R. Lynd, A. Körner, N. Greene, L. Tonachel. 2015. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod. Bioref. (doi: 10.1002/bbb.1559)

Woods, J., L.R. Lynd, M. Laser, M. Batistella, D.D.C. Victoria, K. Kline, A. Faaij. Land and Bioenergy. pP. 258 to 300. In: Souza, G.M., R. Victoria, C. Joly, and L. Verdade (eds.) Bioenergy and Sustainability: Bridging the Gaps. SCOPE, Paris. 2015.