Evert K. Holwerda

Research Scientist
Thayer School of Engineering at Dartmouth

Group Leader
Microbial Cellulose Utilization

evert.k.holwerda@dartmouth.edu

Education

  • MSc, Bioprocess Technology, Wageningen University and Research 2006
  • PhD, Engineering Sciences, Dartmouth 2013

Interests

  • Nature’s capability of solubilizing and utilizing lignocellulosic feedstock materials, specifically
    focused on thermophilic cellulolytic anaerobic bacteria.
  • Physiology and growth of thermophilic anaerobic bacteria, defined cocultures and
    enrichments utilizing carbohydrates derived from lignocellulose.
  • Fermentation of high loadings of (ligno)cellulosic materials by cellulolytic bacteria and
    application of technologies (e.g. cotreatment) that increase solubilization.
  • Cultivation techniques for microorganisms and optimization of data generation, collection
    and processing.

Publications

  1. Yayo J., T. Kuil,D.G. Olson, L.R. Lynd, E.K. Holwerda, A.J.A. van Maris (2021). Laboratory evolution and reverse engineering of Clostridium thermocellum for growth on glucose and fructose. Applied and Environmental Microbiology. DOI:10.1128/AEM.03017-20.
  2. Holwerda E.K.#, J. Zhou, S. Hon, D.M. Stevenson, D.Amador-Noguez, L.R. Lynd#, J.P. van Dijken (2020). Metabolic fluxes of nitrogen and pyrophosphate in chemostat cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Applied and Environmental Microbiology. 86:23. DOI 10.1128/AEM.01795-20.
  3. Holwerda E.K.*#,D.G. Olson*#, N.M. Ruppertsberger, D.M. Stevenson, S.J.L. Murphy, M.I. Maloney, A.A. Lanahan, D. Amador-Noguez, L.R. Lynd (2020). Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnology for Biofuels. 13:40.
  4. Balch M.L., M.B. Chamberlain, R.S. Worthen, E.K.Holwerda#, L.R. Lynd (2020). Fermentation with continuous ball milling: Effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass and Bioenergy. 134:105468.
  5. Holwerda E.K.#, R.S. Worthen, N. Kothari, R.C. Lasky, B.H. Davison, C. Fu, Z-Y.Y Wang, R.A.Dixon, A.K. Biswal, D. Mohnen, R.S. Nelson, H.L. Baxter, M. Mazarei, C.N.Stewart Jr., W. Muchero, G.A. Tuskan, C.M. Cai, E.E. Gjersing, M.F. Davis, M.E.Himmel, C.E. Wyman, P. Gilna, L.R. Lynd# (2019). Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels. 12:15.
  6. Liang* X., J.M. Whitham*, E.K. Holwerda, X. Shao, L. Tian, Y-W. Wu, V. Lombard, B. Henrissat, D.M. Klingeman, Z.K. Yang, M.Podar, T.L. Richard, J.G. Elkins, S.D. Brown, L.R. Lynd (2018). Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnology for Biofuels. 11:243.
  7. Hon S., E.K. Holwerda, R.S. Worthen, M.I.Maloney, L. Tian, J. Cui, P.P. Lin, L.R. Lynd, D.G. Olson (2018).  Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. Biotechnology for Biofuels.11:242.
  8. Ghosh S., E.K. Holwerda, R.S. Worthen, L.R. Lynd, B.P. Epps (2018). Rheological properties of corn stover slurries during fermentation by Clostridium thermocellum.Biotechnology for Biofuels. 11:246.
  9. Kothari N., E.K. Holwerda, C.M. Cai, R. Kumar,C.E. Wyman (2018). Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum. Biotechnology for Biofuels. 11:219.
  10. Hon S., D.G. Olson, E.K. Holwerda, A.A. Lanahan, S.J.L. Murphy, M.I. Maloney, T. Zheng, B. Papanek, A.M. Guss, L.R. Lynd (2017). The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metabolic Engineering. 42:175-184.
  11. Dash S., A. Khodayari, J. Zhou, E.K. Holwerda, D.G. Olson, L.R. Lynd, C.D. Maranas (2017). Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations. Biotechnology for Biofuels. 10:108.
  12. Rydzak T., D. Garcia, D.M. Stevenson, M. Sladek, D.M. Klingeman, E.K. Holwerda, D. Amador-Noguez, S.D. Brown, A.M. Guss (2017). Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metabolic Engineering. 41:182-191.
  13. Bomble Y.J., C-Y. Lin, A. Amore, H. Wei, E.K. Holwerda, P.N. Ciesielski, B.S. Donohoe, S.R. Decker, L.R. Lynd, M.E. Himmel (2017). Lignocellulose deconstruction in the biosphere. Current Opinion in Chemical Biology. 41:61-70.
  14. Balch M.L., E.K. Holwerda, M.F. Davis, R.W.Sykes, R.M. Happs, R. Kumar, C.E. Wyman and L.R. Lynd (2017). Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling. Energy & Environmental Science. 10: 1252-1261.
  15. Lynd L.R.,A.M. Guss, M.E. Himmel, D. Beri, C. Herring, E.K. Holwerda, S.J. Murphy, D.G. Olson, J. Paye, T. Rydzak, X. Shao, L. Tian, R. Worthen (2016). ‘Advances in Consolidated Bioprocessing Using Clostridium thermocellum and Thermoanaerobacter saccharolyticum.’ In C. Wittmann and J.C. Liao (eds), Industrial Biotechnology: Microorganisms (First edition, pp. 365-394). Wiley-VCH/Verlag, GmbH.
  16. Tian L., B. Papanek, D.G. Olson, T. Rydzak, E.K. Holwerda, T. Zheng,  J. Zhou, M. Maloney,  N. Jiang,  R.J. Giannone, R.L. Hettich, A.M. Guss, L.R. Lynd (2016). Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnology for Biofuels. 9(116).
  17. Beri D., D.G. Olson, E.K. Holwerda, L.R. Lynd (2016). Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. FEMS microbiology letters. 363 (11).
  18. Sand* A., E.K. Holwerda*, N.M. Ruppertsberger, M. Maloney, D.G. Olson, Y. Nataf, I. Borovok, A.L. Sonenshein, E.A. Bayer, R. Lamed, L.R. Lynd and Y. Shoham (2015). Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA and alternative SigI6 factors. FEBS letters. 589(20-B):3111-3140.
  19. Holwerda, E.K., P.G. Thorne, D.G. Olson, D. Amador-Noguez, N.L. Engle, T.J. Tschaplinski, J.P. van Dijken and L.R. Lynd (2014). The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnology for Biofuels. 7(155).
  20. Holwerda, E.K. and L.R. Lynd (2013). Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Biotechnology and Bioengineering. 110(9):2389-2394.
  21. Holwerda, E.K., L.D. Ellis, L.R. Lynd (2013). Development and Evaluation of Methods to Infer Biosynthesis and Substrate Consumption in Cultures of Cellulolytic Microorganisms. Biotechnology and Bioengineering. 110(9):2380-2388.
  22. Holwerda, E.K., K.D. Hirst and L.R. Lynd (2012). A defined growth medium with very low background carbon for culturing Clostridium thermocellum. Journal of Industrial Microbiology and Biotechnology. 39(6):943-947.
  23. Ellis, L.D., E.K. Holwerda, D. Hogsett, S. Rogers, X. Shao, T. Tschaplinski, P. Thorne and L.R. Lynd (2011). Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresource Technology. 103(1):293-299.

       *equal contributors, #corresponding author